PVP 23
Code: 23ES1102

I B.Tech - I Semester — Regular Examinations - JANUARY 2024

INTRODUCTION TO PROGRAMMING
(Common for ALL BRANCHES)

Duration: 3 hours ' Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 10 short answer questions. Each Question carties 2
Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit.
Each Question carries 10 marks.
4. All parts of Question paper must be answered in one place.
BL — Blooms Level CO — Course Outcome

PART - A
- BL | CO |
1.a) | Differentiate between the top-down and bottom-up
. L2 | COl
problem-solving approaches.
1.b) | Differentiate between algorithm and flow chart. L2 | COl
1.c) | Differentiate between a "while" loop and a "do-while"
loop, and provide an example of when you would| L2 | COl
choose one over the other.
1.d)7 Explain the difference between the "if" statement and L2 | COl
the "if-else" statement in terms of their execution.
l.e) |In programming, what is a string, and how is it
: : L1 |COl
typically represented in memory? °*
1.f) | What is the purpose of declaring the size of an array
o : ; L1 |COl
B when you create it in a programming language like C?
| 1.g) | Differentiate between a pointer variable and a regular
i . L2 |CO1
variable in terms of how they store data.
1.h) | Explain the role of functions like ‘malloc()’ and ‘free()’
: . Ak L2 [CO1|.
in dynamic memory allocation in C.
1.i) | What is a function in programming, and why is it used? | L1 | COl
1.j) | Compare call-by-value with call-by-reference. | L2 [CO1 |

.

Page 10f4

~PART-B

BL| CO

UNIT-I

Max.
Marks

Explain various operators in C.

L2 | €Ol

5M |

Compare and contrast high-level programming
languages and low-level programming
languages. Give examples of each and discuss
their respective advantages and disadvantages.

L2 | COl

SM |

|

OR

Discuss the concept of data types and their
importance in programming. Provide examples
of situations where choosing the right data type
is crucial for prograrh efficiency.

1.2 | COA

5M

Write an algorithm and draw a flow chart to
calculate the sum of first 10 natural numbers.

L2 | €Ol

UNIT-II

o

Create a C program that employs a "while" loop
to print all even numbers between 1 and 50, but
skips any numbers that are divisible by 6 using
the "continue" statement. Provide the code and
a detailed explanation.

I3 1 €O2

5M

b)

Write a C program that uses a "for" loop to find
the first prime number between 100 and 200.
Implement the "break" statement to exit the
loop once the prime number is found.

L3|Coz2|

5M

OR

Discuss the advantages of using a "switch"
statement over a series of "if" statements in
certain scenarios. Provide an example to
illustrate your point.

L2]col] 5M

b)

Create a C program that continuously prompts
the user to enter a positive integer until a
negative number is entered. Calculate and
display the sum of all the positive integers
entered by the user. Utilize a "while" loop,

L3 CO2

5SM

Page 2 of 4

conditional statements, and the "break"
statement to terminate the loop when a negative
number is provided.

UNIT-III

Discuss the importance of string manipulation
in programming, including tasks like
comparison, concatenation, and substring
extraction. Provide a code example in C that
demonstrates these string operations.

CO3

b)

Explain the advantages of: using a two-
dimensional array over a one-dimensional array
when working with tabular data or grids.
Provide real-world examples where two-
dimensional arrays are useful.

CO2

OR

Imagine you need to manage a list of customer
names in a business application. Discuss the
advantages and disadvantages of using an array
for this purpose. '

co2

b)

You have an array of integers representing the
daily temperatures for a week (index0: Sunday,
index1: Monday and so on). Write a C program
that finds and prints the day with the highest
temperature and the temperature itself.

CO3

UNIT-1V

Design a C program that reverses the elements
of an integer array using pointers. Provide the
code and a step-by-step explanation of the
algorithm. ’

CO3 |

Explain the concept of pointer arithmetic.
Illustrate with an example program.

L3

OR

You are developing a program to manage a
library's book collection. Design a C program
that uses a structure to represent book
information, such as title, author, and

L4

CO4

Page 3of 4

publication year. Implement functionalities to
add and search for books in the collection.
Include the code and explain how structures are

}_used for this purpose.

potential issues associated with using
uninitialized pointers.

Discuss the significance of null pointers and thj L2

CO3

UNIT-V

| parameters and append to a file.

| Explain the concepts of variable scope and

lifetime in a programmming language and
provide examples of local and global variables
in C.

L3 Koﬂ 5M

You are designing a program to manage a

library's catalog. Create a C program that
defines a function to add books to the catalog.
The function should take book details as

OR

L4

Define recursion. Develop a program to find
factorial of a given number using recursion.

L3]

| CO3

SM

Discuss the significance of file modes (e.g., "r,"
"w," "a") when opening and manipulating files,
and provide an example for each mode.

L3

CO3

5M

Page4of4

SHORT SCHEME

P&RT &

i 0

e

stween e Lop-iown ;.md
cM-sHiving approaches.
Scheme: Any two differences — 2M

Scheme: Any two differences - 1M

Example — 1M

lht: *’Ji ei&@

i -mgmm in tenns_nl thur cmcuum,

e e b Lt

l *L 1@} i
Scheme: Any two differcnces - 1M ‘

HMNQ..JY‘L# ‘_.«h,

B o

Explanation — 1M

1.¢) In programming. what 1s a stnng, and how is it| 0
tvp:ml Lprm,med in memory”? e

Scheme: Definition — 1M
Memory Model (diagram)- 1M

‘) "What is the purpme of dLLIdl‘lnbmth size of an dr*r:;zayE
whm you create it in a programming language like C? L

Scheme: Declaration with Explanation - 2M

gy Differentiate bebween a pomter varable and a repular
vanable in terms of how they store data. B |

<t - i e rime RN o . 9 LR

Scheme: Any two differences — 1M

Memory model (diagram) - 1M

it h) Txplain the role of functions like *malloe()” and *free(3
| | in dynamic memory allocation in C,

e

Scheme: Explanation malloc() — 1M

Explanation free() — 1M

4

1.1

e it s s, .

-

L

Fea

1 3) ‘Mm! is a function 4 m p:n-m:mmm&, .md why is 1l us d’ %)

Scheme: Definition — 1M

Usage — 1M
{5 s B e et v - e RTINSO ey e IO i bt s st s W o
- 1.j) | Compare call-by-vilue with call-by-reference.

Scheme: Any two differences — 2M

O

GLE

e i

Cat

(O

Scheme: 2 a) Explanatlon of'any S types of Operators SM-
2b)any 3 differences for each — 3M

Advantages and Disadvantages -2M

Scheme: 3 a) Data types importance — 3M
. Situation -examples - 2M
3 b) Algorithm to find sum of 10 natural numbers — 2.5M

Flowchart to find sum of 10 natural numbers — 2.5M

Lhif—ll

Scheme: 4 a) Program using while loop, if and continue —3+1+1 = 5M

4 b) Program using nested for loop, if and break - 3+1+1 = 5M

S - 8 < M S e i

OR acion i
5 a} Discuss 1h[7dvaniams ot usmg a "switch” "L_ COL 3M !
I ;smh.mc,m over a series of "if" statements m! :
| 'cmmin scenartos. . Provide an example 102
| illustrate your point. : £
b) | Create a C program that continuously prompts L? CO
!th user o enter a posilive integer until a’
! gnt.g,amf: number s entered. Calculate d!ld;
3di§play the sum of all the positive integers '
| f
e
L2

Lentered by the user. Utilize a "while" loop, jmeide |
Scheme: 5 a) Advantages of switch statement — 2.5M

et S
i

xS e oy

m?cundmonal statements, dnd thr. "break" | ;
| ? |
| statement 1o terminate the loop when a negative e
’numbcr is provided. . P

Demonstration with example program — 2.5M

5 b) Demonstrate of Program with while loop. if and break — 5M

UNIT-111 %

6 a) Discuss the nn;;mldmc ol string manipulation ! 1.3 R GTORE
1 i
in o programming, including tasks like i

compaison, coneatenation, and substring

Cextraction. Provide a code example in C that | | 5

| demonstrates these string. npudtmm I Lo ARdg s e
hHI:\plam the advantages of using a two- 1.2 CO20 <\

Cdimenstonal array over a one-dimensional array f

when workimg with tabular dita or - grids.

DProvide real-world examples where two-

cdimenstonal arvays are useful.

Scheme: 6 a) Importance of string manipulation — 2M
Example program for 3 operations — 3M

6 b) Advantages of 2D arrays — 3M
Real-time Examples - 2M

.i

e P A S L . JE e

Ui ot d L Al wbled Y

B n e L

£ ;‘ a)| h I nagine_' you need to manage a list of customer | L3 CO2 | 3 Vi
{ |names in a business application. Discuss the ‘ ;
% ddvantagcs and disadvantages of using an agmy : 1
| for this purposc. e
b) You have an drma of um;_,m zqm,smlmgthc B4CO3 1 5 M

{ daily temperatures for a week (indexO: Sunday, |

l | mdexl - Monday and so on) Write a C pm_
1 iemperaiurémd lhe lcmpcrature xiselt

Scheme: 7 a) Discussion of 2-D Character Arrays to store customer names — 2M

2-D Character array Advantages — 3M
7b) Demonstration with example program — 5SM

UN IT-IV

Scheme: 8 a) Program to reverse array elements — 3M

Step-by-step Explanation — 2M
8 b) Explanation of pointer arithmetic — 2M

Exgxﬁple program — 3M

I OR ‘ 1

9 |a) | You are developing a program to manage al. i“»f&f'{‘,‘{}] SN
|| |library's book collection. Design a C p::og:,ramf -
gk i that uses a structurc 1o rcpmem book |

,mfﬁmzatmn, suuh as title, author, and¢

g puhhmlmn w,,m hnplmwni hmdmnahtle*a 101
add and search for hooks in the collection. |
Include the code and explain how structures are |
‘ (used for this purpose,

'b) Discuss the signthicance ol null pointers and the |
potential - issucs associaled with urmg;

{
i

Cunipitialized pomters. i

Scheme: 9 a) Implementation library system using structure and functions - 5M
9 b) Significance of null pointer — 2.5M
Issues with wild/dangling pointer — 2.5M

e l NIT-V Ay +
10 a) Explain the concepts of variable scope and | 121C03 5 M

ifetime in o a programming language and

Cprovide examples of local and global varnables '

(1 C |

b) You are designing a program to manage a! 14 {(H SM |

Hibrary's catalog. Create a € program that |

- defines a function to add books to the ¢ 1!1110‘1:_. ;

' The function should take book details as |

parameters and append o a file. |

Scheme: 10 a) Explanation of scope and life time of variables — 3M
Example of local and global variables — 2M

10 b) Implementation library system using structures, functions and files — 5SM
e e, R ;

4/ Define recursion. Develop a program 1o find | LATCO3 s M
tactorial of a given nuinber using rec ursion.
‘Discuss the sucmhmnu, of file modes (e, g
L EJegets LIS [S ¢

w." "a") when opening and manipulating files, |
“and provide an example for cach mode, |

AR A R
¢

Scheme: 11 a) Definition — IM

Implementation of the program — 4M
11 b) Description of File opening modes — 2M
Example (Syntax) for each mode — 3M

"camcs 10 marka ' CE
ucstion paper must be amwcmd m one plﬁ

SCHEME OF EVALUATION
PART - A B e o DR
if;hu\wma the {op=lown and k:»mmmwﬂp i ‘1 2 { iﬂ

% w_..n-..». MWH

inpapprosches D D
hes is the process's

Ans: The main difference between the top-down and bottom-up approac

starting point and focus.

differences —2M

Any two
NI
' h
S.No. Top-Down Approach Bottom-Up APProac
s are
i In this approach, the problem is In this approach, the smaller problem
' broken down into smaller parts. solved.
ted
It is generally used by structured It is generally used with object ngi v
2. programming languages such as C, programming paradigm such as ’
COBOL, FORTRAN, etc. Python, etc.
o . . les.
It is generally used with It is generally used in testing module
k documentation of module and
debugging code.
. y i ation.
5 It contains redundant information. It does not contain redunw

d here.

6. Decomposition approach is used here. | Composition approach is us€

The implementation depends on the
programming language and platform.

Data encapsulation and data hiding is
implemented in this approach.

Lb) | Differentiate between aigonis

Ans:

8. No Algorithm

An algorithm is a step-by-step
I. procedure to solve a problem.

The algorithm is complex to
2. understand.

3. Inthe algorithm, plain text is used.
4. The algorithm is easy to debug.
5. The algorithm is difficult to construct.

The algorithm does not follow any
6. rules.

The algorithm is the pseudo-code for
7. the program.

e} afferentiale between a "winke

loop. and provide an exignple o

“ choose one over the other,

Ans:

while

Condition is checked first then statement(s)
is executed.

It might occur statement(s) is executed zero
times, If condition is false.

If there is a single statement, brackets are
not required.

Any two differences — 2M

Flowchart

A flowchart is a diagram created with different

shapes to show the flow of data.

A flowchart is easy to understand.
In the flowchart. symbols/shapes arc used.
A flowchart is hard to debug.

A flowchart is simple to construct.

The flowchart follows rules to be constructed.
A flowchart is just a graphical representation o thid
logic.

-, BananMo|
Yowap and 3 dior-w i

3 : K,
whe would L2 8

SR YOMS

Any two differences - M

Example — 1M

do-while

Statement(s) is executed atleast once,
thereafter cond ition is checked.

At least once the statement(s) is executed.

Brackets are aatways required.

while do-while

Variable in condition is initialized before variable may be initialized before or within
the execution of loop. the loop.
while loop is entry controlled loop. do-while loop is exit controlled loop.
/hil iti
\;\ hile(condition) do §
t ; .
statement(s); e

) ywhile(condition);

Choose between while and do-while based on your specific requirements. If you want to
ensure the loop body is executed at least once, use do-while. If you want the loop to execute
only if the condition is true initially, you can use while.

// Using while loop

while (count <= 5) {
printf("WhiIe loop iteration %d\n", count);
count++;

]

// Using do-while loop

do {
printf("Do-while Joop iteration %d\n", count)i
count++;

} while (count <= 5);

o, s S D

0 ESPRRR difrene between the i sotment and| |
__ithe"ifelse” statement in terms of their execution, | 1
Ans:

: Any two differences - 1M

‘ Explanation—Hv——
if statement:

The if statement is a basic conditional statement that allows you to execute a block of code
only if a certain condition is true. The general syntax of an if statement is as follows:

Copy code
if (condition) {
// Code to be executed if the condition is true
3
1)

if-else statement:

The if-else statement extends the if statement by providing an alternative block of code to be
executed when the condition is false. The general syntax is as follows:

it (condition) {
// Code to be executed if the condition is true
} else {

// Code to be executed if the condition is false

Type of Decision Syntax - Description
Control |
‘Statements in C

|

f The Syntax is: [The Description is:
é{ln the case of such a statement. when the
(it (condition x) lavailable condition is true, there occurs an

s = Himesminy oo W T o
'{ Statements; ! lexecution of a certain block of code.

Aif.. else The Syntax is: ' [The Description is:
(if (condition x) \In the case of such a statement, when the
i
- ! \ lavailable condition is true, then there occurs
4 Statement x: Statement v; | i) y .) _
i Jan execution of a certain group of statements,

?50159 1In case this available condition turgs out to

|
3 . o false Hhare accurs an exoe it
{ Statement a: Statement b: | _ibL false, there occurs an execution of the

[statement specified in the else part,

le) In programming, what is a strinz. and how is it oA .

: s -t 3 : ' .1 &‘ .?‘
typically represented in memory? z

PO S R ——— |

Ans:
Definition — 1M
Memory Model (diagram)- IM

In computer programming, a string is traditionally a sequence of characters, either as a literal
constant or as some kind of variable.

A string is represented by one dimensional character array in memory.

char str[7] = “String”;

str

5y s g i]
sitgr; i n g \0| velue
! 100 101 102 103 104 105 106 Address

l) W nalﬁ Ihs. purpose of declaring the size of an df'mmx
_ when wou create it in a programming language like C?
Ans:

-G

AL

Declaration with Explanation - 2M

int myArray[5]; // Declaring an array of integers with size 5

In programming languages like C, declaring the size of an array when it is created serves
several important purposes:

Memory Allocation: When you declare an array, the compiler needs to allocate a specific
amount of memory for that array.

Indexing: Arrays in C are zero-indexed, meaning the first element has an index of 0, the
second has an index of 1, and so on.

Bounds Checking: While C itself doesn't perform bounds checking, specifying the size allows
programmers to understand the valid range of indices for the array.

Compile-Time Validation: The size specified during array declaration is used for compile-
time checks.

Performance: Knowing the size of an array at compile time allows the compiler to optimize
code more effectively.

R
i 2

rentiate between a pointer varzable and a regular Xoa0
n terms nf how ‘lhey store data Te et ng(lff)i !

o

Any two differences — IM
Memory model (diagram) — 1M

The main difference between a pointer variable and a regular (non-pointer) variable lies in
how they store and represents data.

Regular Variable: Stores the actual data it represents.

Pointer Yariable: Stores the memory address of another variable.

Regularii(ariable: Directly holds a value of a specified data type.

int regularVar = 42; '

Pointer Variable: Holds the memory address of a variable of a specified data type.
int *pointerVar;

int anotherVar = 10;

pointerVar = &anotherVar;

int *a int b

| 7866321 - | |
Address: 7865321 Address: 7866321
Pointer variable Normal variable

oot g 2

1 h}lep!am the role of functions like nmllm() and “free(y %_i 5 f(_”! :
| in dynamic memory allocation in C, g bt

e s S S SRR R RS S T i LBl

Ans:
Explanation malloc() — 1M
Explanation free() - IM

In the C programming language, malloc() and lree() are functions used for dynamic memory
allocation and deallocation, respectively. They play a crucial role in managing memory at
runtime.

malloc() Function:

Purpose: Stands for "memory allocation.” It is used to allocate a specified number of bytes of
memory during the program's execution.

Syntax:

void* malloc(size_t size);

size: The number of bytes to allocate.

Returns a void pointer (void*) to the beginning of the allocated memory block.
Usage:

int *ptr = (int*)malloc(S * sizeof{(int));

free() Function:

Purpose: Used to deallocate memory that was previously allocated using malloc() or a related
function.

Syntax:

void free(void *ptr);

ptr: A pointer to the memory block to be deallocated.
Usage:

int *dynamicArray = (int*)malloc(10 * sizeof(int));
// Use dynamicArray as needed

free(dynamicArray):

Deallocates the memory block previously allocated for dynamicArray.

3
e + -

). 3 \\3ldiik.ailnattuxn n programming. and why is it umaai’ Lo O

Ans:
Definition — 1M

Usage — IM
In C programming, a function is a self-contained block of code that performs a specific task
or set of tasks.

Functions provide a way to modularize code, making it more organized, readable, and
reusable.

Why Functions are Used:

Modularity: Functions allow breaking down a program into smaller, manageable modules,
making the code more organized and easier to understand.

Reuse: Once a function is defined, it can be called from different parts of the program,
promoting code reuse and reducing redundancy.

Readability: Functions improve code readability by encapsulating complex logic into well-
named and self-contained units.

Maintenance: Changes or updates can be made to individual functions without affecting the
rest of the program, simplifying maintenance.

b O i

{7 g o

Call-by-value with call-by-reference,

g fopegi Sy gt e e

ST AD S

Ant two differences — 2M

In programming languages like C, there are two common methods for passing arguments to
functions: call-by-value and call-by-reference. These methods determine how changes made
to the parameters within the function affect the original values passed from the calling

function.

Call By Value Call By Reference

While calling a function, instead of passing

While calling a function, we pass the , :
;i . S the values of variables, we pass the address
values of variables to it. Such functions)) . . ,
SF et 35 of variables (location of variables) to the
are known as “Call By Values”, G 4 :
‘ function known as “Call By References.

In this method, the value of each variable In this method, the address of actual

in the calling function is copied into variables in the calling function is copied
corresponding dummy variables of the into the dummy variables of the called
called function. function.

/ith this me chang de to th e , ;
g;’tl:j:n;lflel?i:l;l[zg’i:}hfh;hcae:]]tlfc? il‘"?né:cteioﬁ the With this method, using addresses we would
havé no effect on the values of actual have access to the actual variables and hence
vriables it elling faficHon we would be able to manipulate them.,

Call By Value

In call-by-values, we cannot alter the
values of actual variables through function
calls.

Values of variables are passed by the
Simple technique.

This method is preferred when we have to
pass some small values that should not
change.

Call by value is considered safer as
original data is preserved

Call By Reference

In call by reference, we can alter the values
of variables through function calls.

Pointer variables are necessary to define to
store the address values of variables.

This method is preferred when we have to
pass a large amount of data to the function.

Call by reference is risky as it allows direct
modification in original data

Ans:

2 a) Explanation of any 5 types of Operators - SM

In the C programming language, operators are symbols used to perform operations on
variables and values.

An arithmetic operator performs mathematical operations such as addition, subtraction,

multiplication, division etc on numerical values (constants and variables).

Operator Meaning of Operator Example

y addition or unary plus 5+ 3 is evaluated to 8
- subtraction or unary minus 5 -3 isevaluated to 2

¥ multiplication 5 * 3 isevaluated to 15
/ division ' 5/3 is evaluated to 1.0
% E?Vmi:tiigg)er after division (modulo 5797 3l is avaluated 1o 3

C Increment and Decrement Operators

C programming has two operators increment ++ and decrement -- to change the value of an

operand (constant or variable) by 1
Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1. These

two operators are unary operators, meaning they only operate on a single operand.

C Assignment Operators

An assignment operator is used for assigning a value to a variable. The most common

assignment operator is =

Operator

Relational Operators:

a=b
a+=b
q =

a¥=bh
a/=b
a%=b

Same as
a=b
a=atb
a=a-b
a=a*b
a= a’b
a=a%b

A relational operator checks the relationship between two operands. If the relation is true. it

returns 1: il the relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator

=

C Logical Operators

Meaning of Operator
Equal to

Greater than

Less than

Not equal to

Greater than or equal to

Less than or equal to

Example

5 == 3 is evaluated to 0

5> 3 is evaluated to 1

5 <3 isevaluated to 0

5 1= 3 is evaluated to |

5>=13 is evaluated to |

5 <=3 is evaluated to 0

An expression containing logical operator returns either 0 or 1 depending upon whether

expression results true or false. Logical operators are commonly used in decision making in €

programming.

Operator Meaning Example

&& Logical AND. True only if all If c =5 and d = 2 then, expression
operands are true ((c==5) && (d>5)) equals to 0.
I Logical OR. True only if either one If ¢ = 5 and d = 2 then, expression
; operand is true ((c==5) || (d>5)) equals to 1.
) Logical NOT. True only if the If ¢ = 5 then, expression !(c==5)
‘ operand is 0 equals to 0.

C Bitwise Operators

During computation, mathematical operations like: addition, subtraction, multiplication,

division, etc are converted to bit-level which makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-level operations.

Operators Meaning of operators
& Bitwise AND

| Bitwise OR

4 Bitwise exclusive OR

~ Bitwise complement
<< Shift left

>> Shift right

Other Operators.

Comma Operator

Comma operators are used to link related expressions together. For example:

int a, ¢ =5, d;

The sizeof operator

The sizeof is a unary operator that returns the size of data (constants, variables, array,

structure, etc).

2 b) any 3 differences for each - 3M
Advantages and Disadvantages — 2M

Both of these are types of programming languages that provide a set of instructions to a
system for performing certain tasks. Though both of these have specific purposes.

It is programmer friendly It is a machine friendly
g I language. language.
High level language is less Low level language is high memory
2, memory efficient. efficient.
3 It is easy to understand. It is tough to understand.
4. Debugging is easy. Debugging is complex comparatively.

It is complex to maintain

5. It is simple to maintain. comparatively.
6. It is portable. It is non-portable.
T [t can run on any platform. It is machine-dependent.

It needs compiler or interpreter for

) ler for t lation.
8. teansiation. It needs assembler for transiation

It is not commonly used now-a-days in

It is used widely for programming. programming

©

Advantages and Disadvantages
Advantages of Low-Level Language

e They are better at performance compared to high-level languages as they provide
direct control over the computer’s-hardware.

e They are better at meniory nanagement.

e Debugging is comparatively easy in low-level language.

o

Disadvantages of Low-Level Languages

e The programmers must know deeply about computer hardware.

e They are sometimes time-consuming because we need to manage the memory and
complexity of the instructions.

¢ They are comparatively less portable than high-level languages.

Advantages of High-Level Language
e High-level languages provide a higher level of abstraction, allowing programmers to

focus on the logic and functionality of their programs rather than the intricate details

of hardware or low-level operations.
e Code written in high-level languages is often more readable and understandable.

e High-level languages offer built-in functions, libraries, and frameworks.

Disadvantages of High-Level Language

e High-level languages are generally slower than low-level languages in view of
execution.
e High-level languages require more memory than low-level languages.

S OR SRR HW;_M
521 fn, mnc.x.pi of data I}pus and ihur.LZ (Oi *'?’vi
lm@% ¢ in programming. Provide cxamples! 2
: G‘f@ jwﬁs where choosing the right data Iypc; _

] 1501 rucial _‘ﬁ:g program efficiency. iR e s
; } {)7 /iite an algorithm and draw 2 flow chﬁrt 10 L2 1 COTFS M
(o 'calﬁ,lgm the sum of first 10 natural numbers. e e ien

3 a) Data types importance — 3M
Situation examples - 2M

Ans:

In programming, a data type is a classification that specifies which type of value a variable
can hold and what operations can be performed on that value. Data types define the
characteristics of data and provide a way for the computer to interpret, store, and manipulate

that data.

Common data types include:

Integer:

Represents whole numbers without a fractional part.
Float/Double:

Represents real numbers with a fractional part.
Character:

Represents a single character, like a letter or a digit.
String:

Represents a sequence of characters.

Array:

Represents a collection of elements of the same data type.

Pointer:

Represents a memory address, used for low-level memory manipulation.
User-defined:

Represents data types created by the programmer.

Choosing the right data types is crucial for program efficiency in various situations,
especially when it comes to memory usage, computational speed, and overall performance.

Scenario: Performing complex numerical calculations, such as simulations or scientific
computations.

Example: Using a float or double data type for floating-point arithmetic operations rather
than a less precise data type like int to maintain accuracy.

Scenario: Implementing collection of homogeneous data elements.

Example: Choosing an appropriate data type for elements in a collection, such as using a
specific array instecad of multiple variables can impact memory usage and retrieval times.

Scenario: Implementing collection of heterogeneous data elements.

Example: Choosing an appropriate data type for elements in a collection, such as using
structure or union instead of multiple variables of different data types can impact memory
usage and retrieval times.

Scenario: Reading from or writing to files.

Example: Choosing appropriate data types for reading and writing data from/to files, such as
using binary formats for efficiency, can impact file I/O performance.

3 b) Algorithm to find sum of 10 natural numbers — 2.5M

Flowchart to find sum of 10 natural numbers — 2.5M

To find the sum of the first 10 natural numbers. you can use a simple algorithm known as the
arithmetic series formula. The sum of the first

n natural numbers is given by the formula:
(n*(n-1))/2

Algorithm: Sum Of First 10 Natural Numbers
Step I: Start

Step 2: Setn= 10

Step 3: Calculate S=(n* (n+1))/2

Step 4: Display S

Step 5: Stop

Flowchart: Provided that N as 10

Ans: 4 a) Program using while loop, if and continue — 3+1+1 =5M

s ""‘r""

g
;._
i

ey

g
f,_

4

._‘zs ;
.’
i
I

SuUM=sum+|

| 1oop once the prime number is found.

_the "break" statement 1o exit ihe_r -‘

1=+ 1

SRR

R - UNIT-11 L

program that umpiuy«a "while" loop | L3 C02 5_;\51,__‘;5;‘,

*ail even numbers between 1 and 50, but tings ..:f{'

numbers that arc divisible by 6 using %

linue” statement. Provide the code and s f
: 1 explanation. o e
by b * program that uses a "for” loop w0 find | 1.3 LOQ M

L ime number between 100 and 200.0 | i

T,

//C Program to print all even numbers between 1 and 50 but not divisible by 6

#include <stdio.h>

int majﬁ() {

int number = 0; // Start with the zero

while (number <= 50) {

S

number += 1; // Move to the next number
if (number % 2 == 0){
if (number % 6 == 0)
continue;

printf("%d\t", number);

return 0;
3
Output:
2481014162022 2628 3234384044 46 50
Explanation:
In this C Program:
We start with number initialized to 0 (the first even number).
The while loop continues as long as number is less than or equal to 50.

Inside the loop, an if statement checks if the number is even (number % 2 == 0)
and again in nested if we check the divisible by 6 (number % 6 == 0).

If both conditions are true, the number is not printed.
Otherwise the number will be printed using printf.

The loop then increments number by 1 in each iteration to move to the next
number.

This code will print all even numbers between 1 and 50 (excluding multiples of
6) in C,

4 b) Program using nested for loop, if and break —3+1+1 =5M
Ans: |
#include <stdio.h>
int main() {
int start = 100;
int end = 200:
// Check each number in the range
for (int num = start; num <= end; num-++) {
int isPrime = 1;
// Check if the current number is prime
for (inti=2; i <= num/2; i++) {
if (num % i==0) {
isPrime = 0

break; // No need to continue checking if it's not prime

1
]
// Tf the number is prime, print it and break the loop
if (isPrime ==1) {
printf("The first prime number between %d and %d is: %d\n", start, end, num);

break; // Found the first prime, no need to continue

1
}
return 0;

}
Qutput:
The first prime number between 100 and 200 is: 101

I
|
1

‘ tha user. lulm i Whﬂc" ieop,‘

and the "h

5 a) Advantages of switch statement — 2.5M
Demonstration with example program — 2.5M
Ans:

Using a switch statement over continuous if statements in C has several advantages,
especially when dealing with multiple conditional branches. Here are some of the key

advantages:

Readability: Switch statements can make your code more readable and concise, especially
when dealing with multiple conditions. It provides a clear structure and is easier to
understand than a series of nested if statements.

Efficiency: In some cases, a switch statement can be more efficient than a series of if
statements. The compiler can optimize the switch statement, making it faster to execute.

Code Maintainability: Switch statements can be easier to maintain, especially when new
cases need to be added. Modifying a switch statement typically involves adding or removing
case labels, which is more straightforward than modifying a series of if statements.

Switch Fall-Through: Switch statements allow for fall-through behavior, where multiple
case labels can share the same code block. This can be useful in certain scenarios where you
want to execute the same code for multiple cases without duplicating it.

// Using switch statement
switch (variable) {
case |:
// Code for case |
break;
case 2:
// Code for case 2
break;
default:

/! Code for default case

// Equivalent using if statements
if (variable == 1) {
// Code for case 1
} else if (variable == 2) {
// Code for case 2
3 else {
// Code for default case
}
#include <stdio.h>
int main() {
int option = 2;
switch (option) {
case 1:
printf{("Option 1 selected.\n");
break;

case 2:
printf("Option 2 selected.\n");
break;
default:
printf("Invalid option.\n");
}
return 0;
}
Output: |
Option 2 selected.

5 b) Demonstrate of Program with while loop, if and break — SM

Ans:
#include <stdio.h>
int main() {
int Sum = 0;
int n;
while(1)
{
printf("Enter any number: ");
scanf("%d", &n);
if (n>=0)
Sum +=n;
else
break;
}
printf(""The Sum is: %d", Sum);
return 0;
i
Qutput:
Enter any number: 5

Enter any number: 2

Enter any number: 3
Enter any number: -5

The Sum is: 10

f UNIT-1II g

!r(- d} I)!\L Uss the ll]l!?ﬂﬁdlkc of \[[‘jnu {’n‘uupui Hion : {2 } (TR Puaian

| gm ;)lnu.u\lllnm:, lmludmg tasks like ‘

] ;ccmlpm ison, concatenation, and substring

- extraction. Provide a code example in C that
dmmnstra[u these string operations.

sy prlam the adv antages of using a two- ! L2 ¢

dimensional arvay over a one-dimensional array | s
when working with tabular data or grids
Provide real-world examples where two-
dimensional aravs are usciud e

i e R B

o~

6 a) Ans:

String manipulation is a crucial aspect of programming with significant importance in various
domains. Strings play a vital role in any programming language. Properly understanding
string manipulation techniques can help developers easily handle tricky situations.

C stremp()

The stremp() compares two strings character by character. If the strings are equal, the
function returns 0.

C stremp() Prototype

The function prototype of stremp() is:

int stremp (const char* strl, const char* sti2);

stremp() Parameters

The function takes two parameters:

. strl - a string

. str2 - a string

Return Value Remarks

0 if strings are equal

>() if the first non-matching character in strl is greater (in ASCII) than that of str2.
<0 if the first non-matching character in strl is lower (in ASCIT) than that of str2.
The stremp() function is defined in the string.h header file.

#include <stdio.h>

#include <string.h>

int main() {

éhar strif] = "abed", str2[] = "abCd", str3[] = "abcd";
int result;
// comparing strings strl and str2
result = stremp(strl, str2);
printf("stremp(strl, str2) = %d\n", result);
// comparing strings str] and str3
result = stremp(strl, str3);
printf("stremp(strl, str3) = %d\n", re;sult);
return 0;

i

Output

stremp(strl, str2) = 1

stremp(strl, str3) =0

‘. In the program,

. strings strl and str2 are not equal. Hence, the result is a non-zero integer.
. strings strl and str3 are equal. Hence, the result is 0.

C streat() '

The function definition of strcat() is:

char *strcat(char *destination, const char *source)

It is defined in the string.h header file.

strcat() arguments

As you can see, the strcat() function takes two arguments:

destination - destination string

source - source string

The strcat() function concatenates the destination string and the source string, and the result is
stored in the destination string. '

Example: C strcat() function

#include <stdio.h>

#include <string.h>

int main() {
char str1[100] = "This is ", str2[] = "programiz.com";
// concatenates strl and str2

// the resultant string is stored in strl.

streat(strl, str2);
puts(strl);
puts(str2);
return 0;
}
Output
This is programiz.com
programiz.com

Note: When we use strcat(), the size of the destination string should be large cnough to store
the resultant string. If not, we will get the segmentation fault error.

strocpy()

The C library function char *strncpy(char *dest, const char *src, size_t n) copies up ton
characters from the string pointed to, by src to dest. In a case where the length of src is less
than that of n, the remainder of dest will be padded with null bytes.

Declaration

Following is the declaration for strnepy() function.

char *strncpy(char *dest, const char *src, size_tn)

Parameters

dest — This is the pointer to the destination array where the content is to be copied.
src — This is the string to be copied.

n — The number of characters to be copied from source.

Return Value

This function returns the pointer to the copied string.

Example

The following example shows the usage of strnepy() function. Here we have used function
memset() to clear the memory location.

#include <stdio.h>
#include <string.h>
int main () {
char src[40};
char dest[12];
memset(dest, "\0', sizeof(dest));
strepy(sre, "This is tutorialspoint.com™);

strnepy(dest, sre, 10);

-

printf("Final copied string : %s\n", dest);
return(0);

}

Output:

Final copiéd string: This is tu
6 b) Advantages of 2D arrays - 3M
Real-time Examples - 2M

Ans:

Two-dimensional arrays have several advantages over one-dimensional arrays in certain
situations. Here are some of the key advantages:

Syntax:
data_type array_name[rows][columns];

Matrix Representation:

Two-dimensional arrays provide a natural and convenient way to represent matrices. In
applications like graphics, image processing, and mathematical computations, matrices.

Tabular Data:

When dealing with tabular data, such as spreadsheets or databases, a two-dimensional array is
often more suitable, Each row can represent a record, and each column can represent a
different attribute or field. :

Ease of Access: Accessing elements in a two-dimensional array is often more straightforward
and readable, especially when dealing with data organized in rows and columns.

Simplified Code for Grids and Game Boards:

For applications involving grids, game boards, or maps, a two-dimensional array provides a
natural representation. '

Spatial Relationships:

Two-dimensional arrays are beneficial when dealing with spatial relationships or coordinates.
For example, in graphics programming, each element in a 2D array could represent a pixel on
the screen with x and y coordinates, simplifying operations like drawing shapes or images.

Real-world Examples:

Matrices in Mathematics

Sudoku Solvers

Crossword Puzzles and Word Grids
Image Processing

Graphics Programming

Spreadsheet Applications

Game Development
Database Systems

Geog,raphlc Information Systems (GIS)

iyt et i S P i s et e B A P o o

i

71 a) | ima;_,mt: mu ‘need 1o man: e a list of customer | L3 P CO?2 L3V

i Inames in i business \m; lication. Discuss th
Sadvamtages and disady antaces of using an ana
for this PLJ!'}N’}HU.

« b)) You have an array of integers representing t%m
daily lcmpcz'aiurcs tor a week Ondex(: Sunday. |
Sndex 1 Monday and so ong, Write a C }"i'n“ra!mi

that finds and prints the day with the highest !

: | [temperature and the temperature atself. E

'*‘, (:.
o S I b

i

]
#F

¥ Sl o LT
A,
el
G

o a

X H
s g o

7 a) Ans:

When maintaining a list of customers in a business application, the choice of data structure,
such as an array, comes with its own set of advantages and disadvantages.

Two-dimensional character arrays are best suitable for this application.

char variable _name[rows][columns] = {list of string separated by commay};

Memory Representation of an Array of Strings

Advantages of using an array:
Sequential Access:

Arrays provide sequential access to elements, making it easy to iterate through the list of
customers. This is beneficial when you need to perform operations that involve processing
each customer in a specific order.

Simplicity and Efficiency:

Arrays are simple and efficient data structures for storing a fixed-size list of elements. They
offer constant-time access to any element using the index, making retrieval and modification
operations straightforward.

Memory Contiguity:

Elements in an array are stored in contiguous memory locations. This can lead to better cache
locality, which may result in improved performance for certain operations compared to more
scattered data structures.

Index-Based Access:

Array elements can be accessed directly using indices. This makes it easy to locate and
manipulate specific customers based on their position in the array, facilitating quick retrieval
and modification.

Fixed Size:

If the number of customers is known to be fixed or can be determined in advance, using an
array allows you to allocate a fixed amount of memory. This can be advantageous in terms of
memory management and resource allocation.

Disadvantages of using an array:

Fixed Size Limitation:

Arrays have a fixed size, and if the number of customers exceeds the allocated size, resizing
the array becomes necessary. This process can be inefficient, especially if it involves copying
elements to a larger array.

Inefficient Insertions and Deletions:

Inserting or deleting customers in the middle of the array can be inefficient, as it requires
shifting elements to accommodate the change. This operation has a time complexity of O(n),
where n is the number of elements in the array.

Wasted Memory:

If the array is allocated with a size larger than the actual number of customers, memory may
be wasted. This is especially true if the size is chosen to accommodate potential future growth

that may not occur.

Sparse Data Representation:

If there are gaps or empty slots in the array due to deletions, the array may not efficiently
represent the actual number of customers. This can lead to inefficient memory usage.

Limited Dynamic Behavior:

Arrays do not dynamically resize themselves, and managing dynamic behavior, such as
accommodating fluctuating numbers of customers, requires additional logic and potentially
more complex data structures.

7 b) Demonstration with example program — 5SM
Ans:

#include <stdio.h>

int main(). {

int temperatures[7] = {32, 28, 35, 30, 33, 29, 31}; // Replace with your actual
temperatures

int maxTemperature = temperatures[0]; // Initialize with the temperature of the first day
int dayWithMaxTemperature = 0; // Initialize with the index of the first day
for (inti=1;i<7; ++i) {

if (temperatures[i] > maxTemperature) {

maxTemperature = temperatures|i};

dayWithMaxTemperature = i;

S

]
5
// Adding 1 to the index to get the actual day (assuming days are numbered from 1 to 7)

printf("The day of the week with the highest temperature is day %d.\n",
dayWithMaxTemperature + 1);

return 0;
}
Output:

The day of the week with the highest temperature is day 3.

UNIT-IV

8 @) Design a C program that reverses the elements| 1.3 [CO \
of an integer array using pointers. Provide umi s

| code and a step-by-step explanation of the el ot

! ~algonthm. ; o8

| /b) Explain the concept of pojnter arithmetic. | L3 (0 \
| Nustyrate with an example program. | i |

8 a) Program to reverse array elements — 3M
Step-by-step Explanation - 2M

Ans)
/1 C Program to reverse an array using pointers
#include <stdio.h>
int main() {

{// Initialize the array

intarr[] = {1, 2, 3, 4, 5};

int *start, *end, temp;

// Calculate the size of the array

int length = sizeof{arr)/sizeof(arr[0]);

printf("Original Array: "):

for(int i = 0: i < length; i++){

printf("%d ", arr[i]):
}
start = arr; // Points to first element of array

end = arr + (length - 1); // Points to last element of array

// Reverse the array
while(start < end){
// Swap items stored at *start and *end
temp = *start;
*start = *end;
*end = temp;
start++; // Move to next address
end--; // Move to previous address
}
printf{"\nReversed Array: ");
for(int i‘ = (); i < length; i++){
printf("%d ", arr{i]);
]
return 0;
) s
Output:
Original Array: 12345
Reversed Array: 5432 1

To reverse an array using pointers in C, we can use the following algorithm:

Initialize two pointers *start and *end of the same data type as of the array.

2. Initially, assign the array itself to the pointer *start so that it can point to the first
element of the array.

Add the (size of the array — 1) to the array and assign it to the pointer *end so that it
can point to the last element of the array.

Run a while loop until the pointers *start and *end point to the same address.

Inside the while loop, swap the elements pointed to by *start and *end.

6. Increment *start by | so that it can point to the next element of the array and
decrement *end by 1 so that it can point to the previous element of the array in each
iteration of the while loop.

—

s

o

8 b) Explanation of pointer arithmetic — 2M
Example program - 3M

Ans:

Pointer Arithmetic is the set of valid arithmetic operations that can be performed on pointers.
The pointer variables store the memory address of another variable. It doesn’t store any
value.

Hence, there are only a few operations that are allowed to perform on Pointers in C language.
The C pointer arithmetic operations are slightly different from the ones that we generally use
for mathematical calculations. These operations are:

Increment/Decrement of a Pointer
Addition of integer to a pointer
Subtraction of integer to a pointer
Subtracting two pointers of the same type
Comparison of pointers
#include <stdio.h>
// pointer increment and decrement
//pointers are incremented and decremented by the size of the data type they point to
int main()
{
inta=22;
int *p = &a;
printf("p = You\n". p): // p = 6422288
pt+;
printf("p++ = %u\n", p); //p++ = 6422292 +4 // 4 bytes
p--:

printf{("p-- = %u'\n", p); //p-- = 6422288 -4 // restored to original
value

p=p+3;

printf(""Pointer p after Addition: ");
printf("%u \n", p);

p=p-3;

printf("Pointer p after Subtraction: ");
printf("%u \n", p);

int *q, k=5;

intx=p-q;

printf(" Subtraction of p & q is %u'n", x);
if (p==q) {

printf(" Pointers are Equal.");

—

else {

printf("Pointers are not Equal.");

return 0;
H
Output:
p=3181500672
pi+ = 3181500676
p--= 3181500672
Pointer p after Addition: 3181500684
Pointer p after Subtraction: 3181500672
Subtraction of p & q is 4015551 024

Pointers afg not Equal.

Ans: 9"a) Im plementation library system using structure and functions -
M

#include <stdio.h>

#include <string.h>

// Structure to represent book information
struct Book {

char title[50];

char author{50};

int publicationYeér;

// Function to add a book to the collection
void addBook(struct Book collection[], int *numBooks) {
if (*numBooks < 100) {
printf("Enter book title: ");

scanf(" %[™Mn]". collection[*numBooks].title);

printf("Enter author name: ");

scanf(" %{™n]", collection[*numBooks].author);

printf("Enter publication year: ");

scanf("%d", &collection[*numBooks].publicationYear);

(*numBooks)++;
printf("Book added successtully!\n");
} else {

printf("Error: Collection is full. Cannot add more books.\n");

S

// Function to search for a book by title
void searchBook(struct Book collection[], int numBooks, const char *searchTitle) {

int found = 0

for (int i = 0; 1 < numBooks; ++i) {
if (stremp(collection[i].title, searchTitle) == 0) ¢
printf("Book Found!\n");
print{{("Title: %s\n", collection[i].title);
printf(" Author: %s\n", collection[i].author);
printf("Publication Year: %d\n", collection[i].publicationYear);
found = 1;

break;

—

if (Mfound) {

printf("Book not found in the collection.\n");

St

int main() {
struct Book bookCollection[100]; // Array to store books

int numBooks = 0; // Number of books in the collection

int choice;

char searchTitle[50];

do {
// Display menu
printf("\nMenu:\n");
printf("1. Add a book to the collection\n");
printf("2. Search for a book by title\n");
printf("3. Exit\n");
- printf("Enter your choice: ");

scanf("%d", &choice);

switch (choice) {

cdse &
addBook(bookCollection, &numBooks);
break;

ease 2:
printf("Enter the title of the book to search: ");
scanf(" %[™n]", searchTitle);
searchBook(bookCollection, numBooks, searchTitle);

break;

case 3:
printf("Exiting the program. Goodbye!\n");
break;
default:
printf("Invalid choice. Please enter a valid option.\n");

}

} while (choice != 3);

return 0
Output;
Menu:

1. Add a book to the collection

[N

. Search for a book by title

3. Exit

Enter your choice: 1

Enter book title: Introduction to C Programming
Enter author name: Reema Thareja

Enter publication year: 2023

Book added successfully!

Menu:

1. Add a book to the collection

g

. Search for a book by title

3. Exit

Enter your choice: 2

Enter the title of the book to search: Introduction to C Programming
Book Found!

Title: Introduction to C Programming

Author: Reema Thareja

Publication Year: 2023

9 b) Significance of null pointer — 2.5M

Issues with wild/dangling pointer — 2.5M
Ans:

* Null Pointer in C:

A null pointer in C is a pointer that does not point to any memory [ocation. It is represented
by the constant NULL and is typically used to indicate that the pointer is intentionally not
pointing to a valid memory location. '

Syntax: type pointer_name = NULL;
The significance of null pointers includes:

Initialization and Indication of Absence:

Null pointers are commonly used to initialize pointers or indicate that a pointer does not
currently point to any valid memory address. This is especially useful when the pointer's
target is not known or not applicable.

Error Handling:

Functions that return pointers often use null pointers to indicate errors or exceptional
conditions. For example, if a function fails to allocate memory, it might return a null pointer

to signify the failure.
Pointer Comparison:

Null pointers are often used in comparisons to check whether a pointer points to a valid
memory location. This is particularly useful for avoiding dereferencing invalid pointers and
causing undefined behavior.

Potential Issues with Uninitialized Pointers:
Syntax/Example:

int *p;

=12,

Undefined Behavior:

Using an uninitialized pointer (a pointer that has not been assigned a valid memory address)
Jeads to undefined behavior. Dereferencing such a pointer can result in unpredictable
consequences, including crashes, data corruption, or security vulnerabilities.

Memory Access Violations:

Dereferencing an uninitialized or null pointer can lead to memory access violations. This
occurs when the program attempts to read or modify memory at an address that is not
allocated or accessible.

Hard-to-Detect Bugs:

Bugs arising from uninitialized pointers can be challenging to detect and debug. The
program's behavior might seem normal until it encounters a situation where the uninitialized

pointer is accessed, causing unexpected issues.

Security Risks:

Uninitialized pointers can be exploited by attackers to manipulate the program's behavior,
leading to security vulnerabilities. For example, they might use uninitialized pointers to
overwrite memory, execute arbitrary code, or gain unauthorized access.

Resource Leaks:

If an uninitialized pointer is used to store the address of dynamically allocated memory. there
is a risk of resource leaks. Without proper initialization or deallocation, the program may lose
references to allocated memory, leading to memory leaks.

}

ST e e Mo st
10 a) | Explain “the wnm,p!s of variable qcopc and | 1 2; O30 5M
lifetime in a programming language and J . |
provide examples of local and global variables i
g C.

UNIT-V LaEMe L

{
; f
You are designing a program to manage a; L4
:hhz';u'y's catalog. Create o € program that | i
(defines a function to add books to the catalog. | I

y M\

-~
o
e
S
vl

' The function should take bock details as
parameters and append to a e,

10 a) Explanation of scope and life time of variables —3M
Example of local and global variables - 2M

Ans:

In C, the concepts of scope and lifetime define when and where a variable is accessible and
how long it exists during the execution of a program.

Scope of Variables:

Scope refers to the region of the program where a variable is visible and can be accessed. In
C, there are three primary types of scope:

Block Scope (Local Scope):
Variables declared within a block of code. such as inside a function, have block scope.

They are only accessible within the block where they are declared and are not visible outside
that block.

Block-scoped variables are typically used for temporary storage or as loop counters.
void exampleFunction() {
int localVar = 10; // Block-scoped variable
// localVar is visible and usable only within this function
b
Function Scope:
In C, variables declared outside of any function (at the tile level) have function scope.

They are accessible throughout the file after their declaration.

Function-scoped variables are often used as global variables.
/ Functioﬁ—scoped variable
int globalVar = 20;
void exampleFunction() { |
// globalVar is accessible within this function
}
File Scope (Global Scope):
Variables declared using the static keyword outside of any function have file scope.

They are accessible throughout the entire file in which they are declared but are not visible
outside that file.

//'F ile-scoped variable
static int fileVar = 30;
void exampleFunction() {
// fileVar is accessible within this function
H
Lifetime of Variables:

Lifetime refers to the period during which a variable éxists in memory, from its creation to its
destruction. In C, there are four primary types of variable lifetime:

Automatic (Local) Variables:

Variables declared within a block without the static keyword have automatic storage
duration. '

They are created when the block is entered and destroyed when the block is exited.
Example: '
void exampleFunction() {
int loca.IVar =10; // Automatic variable
// localVar exists while this function is executing
}
Static Variables:
Variables declared with the static keyword have static storage duration.
They are created before the program starts and persist throughout the program’s execution.
Example:
void exampleFunction() {
static int staticVar = 20; // Static variable

// staticVar exists throughout the program's execution

}

#include <stdio.h>

// Global variable

int globalVar = 10;

/I Function using both local and global variables

void exampleFunction() {

// Local variable within the function

int localVar = 5;

/I Accessing and modifying local and global variables
printf("Local variable: %d\n", localVar):
printf{"Global variable: %d\n", globalVar);

localVar += 2;

globalVar += 5;

printf{"Modified local variable: %d\n", localVar);

printf("Modified global variable: %d\n", globalVar);

int main() {

f

/I Accessing and modifying global variable from main function
printf("Global variable in main: %d\n", globalVar);

globalVar += 3;

printf("Modified global variable in main: %d\n", globalVar);

/f Calling the function

exampleFunction();

return 0

Output:

Global variable in main: 10

Modified global variable in main: 13

Local variable: 5

Global variable: 13

Modified local variable: 7

* Modified global variable: 18

10 b) Implementation library system using structures, functions and files —
SM

Ans:
#include <stdio.h>
// Structure definition for a book
struct Book {
char title[100];
char author[100];
int year:
1
// Function to add a book to the file
void addBookToFile(struct Book book, const char *ﬁléname) {
FILE *file = fopen(*book_catalog.bin”, "ab"); // Open the file in binary apperid mode
if (file ==NULL) {
printf("Error opening file %s\n", filename);
return;
}
/f Write the book structure to the file
fwrite(&book, s'izeof(struct Book), 1, file);
// Close the file
fclose(file);
!
int main() {
struct Book newBook;
// Get input for the new book
printf("Enter book title: ");
scanf("%[Mn]", newBook.title);
printf{"Enter author name: ");
scanf("%["\n]", newBook.author);
printf("Enter publication year: ");
scanf("%d", &newBook.year);

/! Add the book to the file

addBookToFile(newBook, "books.dat");
printf("Book added successfully!\n");
return 0;
b
Output:
Enter book title: Introduction to C Programming
Enter author name: Reema Thareja
Enter publication year: 2023

Book added successfully!

OR
11 a) Define ru.ursum I)uclnp a pmgmm 1o find
factorial of a given number using recursion.

h} Discuss the SlgilidenLL of file modes (L g, g "r T:g

- "w." "a") when opening and manipulating ﬁ}e
| and provide an example for cach mode,

11 a) Definition — IM

Implementation of the program — 4M

Ans) Recursion is a programming concept where a function calls itself directly or indirectly
to solve a problem. In recursive programs, a problem is divided into smaller subproblems,
and each subproblem is solved using the same approach. Recursive functions have two main
components: a base case and a recursive case.

#include <stdio.h>
// Function to calculate the factorial of a number using recursion
unsigned long long factorial(int n) {

// Base case: factorial of 0 is 1

if (n==0) {
return 1;
} else {

// Recursive case: factorial(n) = n * factorial(n-1)

return n * factorial(n - 1);

h
int main() {
int number;

// Input from the user

print{{("Enter a non-negative integer: ");

scanf("%d", &number);

// Check if the number is non-negative
if (number < 0) {
printf("Factorial is undefined for negative numbers.\n");
} else {'
// Call the factorial function and display the result
unsigned long long result = factorial(number);
printf("Factorial of %d = %llu\n", number, result);
!
return (;
}
Output:
Enter a non-negative integer: 6
Factorial 0_f6 =720
11 b) Déscription of File opening modes — 2M
Example (Syntax) for each mode — 3M

Ans:

A File is a collection of data stored in the secondary memory. A file represents a sequence of
bytes, regardless of it being a text file or a binary file.

File opening modes:

"r'" (Read mode):

Opens the file for reading.

The file must exist; otherwise, the fopen function will return NULL.,
The file pointer is positioned at the beginning of the file.
FILE *file = fopen("example.txt", "r");

"w'" (Write mode):

Opens the file for writing.

If the file already exists, its contents are truncated (deleted).
If the file does not exist, a new file is created.

The file pointer is positioned at the beginning of the file.

FILE *file = fopen("example.txt", "w");

"a" (Append mode):

Opens the file for writing, but if the file exists, the file pointer is positioned at the end of the
file. '

If the file does not exist, a new file is created.
Existing content in the file is not truncated.
FILE *file = fopen("example.txt", "a"),

"rb", "wb", "ab" (Binary modes):

These are similar to "r", "w", and "a" modes, respectively, but they open the file in binary
mode.

Binary mode is used when working with binary data, and it ensures that the data is read or
written as is without any newline character conversions.

FILE *file = fopen("example.bin", "rb");

FILE *file = fopen("example.bin", "wb");

FILE *file = fopen("example.bin", "ab");

"r+" (Read and Write mode):

Opens the file for both reading and writing.

The file must exist.

The file pointer is positioned at the beginning of the file.
FILE *file = fopen("example.txt". "r+");

"w+" (Read and Write mode):

Opens the file for both reading and writing.

IT the file exists, its contents are truncated.

1f the file does not exist, a new file is created.

The file pointer is positioned at the beginning of the file.
FILE *file = fopen("example.txt", "w+");

"a+" (Read and Append mode):

Opens the file for both reading and appending.

If the file exists. the file pointer-is positioned at the end of the file.
If the file does not exist, a new file is created.

FILE *file = fopen("example.txt", "a+");

It's important to note that these modes can be combined. for example, "rb+", "w+", "a+", etc.,
to achieve different combinations of read and write operations. Additionally, always check
whether the file was successfully opened by checking if the file pointer is not NULL afier the
fopen call.

